Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hypertens Res ; 47(4): 998-1016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302775

RESUMO

The aim was to evaluate the effects of renal denervation (RDN) on autoregulation of renal hemodynamics and the pressure-natriuresis relationship in Ren-2 transgenic rats (TGR) with aorto-caval fistula (ACF)-induced heart failure (HF). RDN was performed one week after creation of ACF or sham-operation. Animals were prepared for evaluation of autoregulatory capacity of renal blood flow (RBF) and glomerular filtration rate (GFR), and of the pressure-natriuresis characteristics after stepwise changes in renal arterial pressure (RAP) induced by aortic clamping. Their basal values of blood pressure and renal function were significantly lower than with innervated sham-operated TGR (p < 0.05 in all cases): mean arterial pressure (MAP) (115 ± 2 vs. 160 ± 3 mmHg), RBF (6.91 ± 0.33 vs. 10.87 ± 0.38 ml.min-1.g-1), urine flow (UF) (11.3 ± 1.79 vs. 43.17 ± 3.24 µl.min-1.g-1) and absolute sodium excretion (UNaV) (1.08 ± 0.27 vs, 6.38 ± 0.76 µmol.min-1.g-1). After denervation ACF TGR showed improved autoregulation of RBF: at lowest RAP level (80 mmHg) the value was higher than in innervated ACF TGR (6.92 ± 0.26 vs. 4.54 ± 0.22 ml.min-1.g-1, p < 0.05). Also, the pressure-natriuresis relationship was markedly improved after RDN: at the RAP of 80 mmHg UF equaled 4.31 ± 0.99 vs. 0.26 ± 0.09 µl.min-1.g-1 recorded in innervated ACF TGR, UNaV was 0.31 ± 0.05 vs. 0.04 ± 0.01 µmol min-1.g-1 (p < 0.05 in all cases). In conclusion, in our model of hypertensive rat with ACF-induced HF, RDN improved autoregulatory capacity of RBF and the pressure-natriuresis relationship when measured at the stage of HF decompensation.


Assuntos
Síndrome Cardiorrenal , Fístula , Insuficiência Cardíaca , Hipertensão , Ratos , Animais , Ratos Transgênicos , Pressão Sanguínea , Natriurese , Rim , Circulação Renal , Simpatectomia , Taxa de Filtração Glomerular
2.
Sci Rep ; 13(1): 20923, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38017033

RESUMO

Heart failure (HF) is life-threatening disease due to electro-mechanical dysfunction associated with hemodynamic overload, while alterations of extracellular matrix (ECM) along with perturbed connexin-43 (Cx43) might be key factors involved. We aimed to explore a dual impact of pressure, and volume overload due to aorto-caval fistula (ACF) on Cx43 and ECM as well as effect of renin-angiotensin blockade. Hypertensive Ren-2 transgenic rats (TGR) and normotensive Hannover Sprague-Dawley rats (HSD) that underwent ACF were treated for 15-weeks with trandolapril or losartan. Blood serum and heart tissue samples of the right (RV) and left ventricles (LV) were used for analyses. ACF-HF increased RV, LV and lung mass in HSD and to lesser extent in TGR, while treatment attenuated it and normalized serum ANP, BNP-45 and TBARS. Cx43 protein and its ser368 variant along with PKCε were lower in TGR vs HSD and suppressed in both rat strains due to ACF but prevented more by trandolapril. Pro-hypertrophic PKCδ, collagen I and hydroxyproline were elevated in TGR and increased due to ACF in both rat strains. While SMAD2/3 and MMP2 levels were lower in TGR vs HSD and reduced due to ACF in both strains. Findings point out the strain-related differences in response to volume overload. Disorders of Cx43 and ECM signalling may contribute not only to HF but also to the formation of arrhythmogenic substrate. There is benefit of treatment with trandolapril and losartan indicating their pleiotropic anti-arrhythmic potential. It may provide novel input to therapy.


Assuntos
Fístula , Insuficiência Cardíaca , Hipertensão , Ratos , Animais , Ratos Transgênicos , Losartan/farmacologia , Renina , Conexina 43/genética , Ratos Sprague-Dawley , Pressão Sanguínea , Matriz Extracelular
3.
Hypertens Res ; 46(10): 2340-2355, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37592042

RESUMO

The aim of the present study was to assess the autoregulatory capacity of renal blood flow (RBF) and of the pressure-natriuresis characteristics in the early phase of heart failure (HF) in rats, normotensive and with angiotensin II (ANG II)-dependent hypertension. Ren-2 transgenic rats (TGR) were employed as a model of ANG II-dependent hypertension. HF was induced by creating the aorto-caval fistula (ACF). One week after ACF creation or sham-operation, the animals were prepared for studies evaluating in vivo RBF autoregulatory capacity and the pressure-natriuresis characteristics after stepwise changes in renal arterial pressure (RAP) induced by aortic clamping. In ACF TGR the basal mean arterial pressure, RBF, urine flow (UF), and absolute sodium excretion (UNaV) were all significantly lower tha n in sham-operated TGR. In the latter, reductions in renal arterial pressure (RAP) significantly decreased RBF whereas in ACF TGR they did not change. Stepwise reductions in RAP resulted in marked decreases in UF and UNaV in sham-operated as well as in ACF TGR, however, these decreases were significantly greater in the former. Our data show that compared with sham-operated TGR, ACF TGR displayed well-maintained RBF autoregulatory capacity and improved slope of the pressure-natriuresis relationship. Thus, even though in the very early HF stage renal dysfunction was demonstrable, in the HF model of ANG II-dependent hypertensive rat such dysfunction and the subsequent HF decompensation cannot be simply ascribed to impaired renal autoregulation and pressure-natriuresis relationship.


Assuntos
Insuficiência Cardíaca , Hipertensão , Ratos , Animais , Angiotensina II/farmacologia , Natriurese , Rim , Pressão Sanguínea , Ratos Transgênicos , Circulação Renal , Sódio , Homeostase
4.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3757-3773, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37338578

RESUMO

Heart failure (HF) has been declared as global pandemic and current therapies are still ineffective, especially in patients that develop concurrent cardio-renal syndrome. Considerable attention has been focused on the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway. In the current study, we aimed to investigate the effectiveness of sGC stimulator (BAY41-8543) with the same mode of action as vericiguat, for the treatment of heart failure (HF) with cardio-renal syndrome. As a model, we chose heterozygous Ren-2 transgenic rats (TGR), with high-output heart failure, induced by aorto-caval fistula (ACF). The rats were subjected into three experimental protocols to evaluate short-term effects of the treatment, impact on blood pressure, and finally the long-term survival lasting 210 days. As control groups, we used hypertensive sham TGR and normotensive sham HanSD rats. We have shown that the sGC stimulator effectively increased the survival of rats with HF in comparison to untreated animals. After 60 days of sGC stimulator treatment, the survival was still 50% compared to 8% in the untreated rats. One-week treatment with sGC stimulator increased the excretion of cGMP in ACF TGR (109 ± 28 nnmol/12 h), but the ACE inhibitor decreased it (-63 ± 21 nnmol/12 h). Moreover, sGC stimulator caused a decrease in SBP, but this effect was only temporary (day 0: 117 ± 3; day 2: 108 ± 1; day 14: 124 ± 2 mmHg). These results support the concept that sGC stimulators might represent a valuable class of drugs to battle heart failure especially with cardio-renal syndrome, but further studies are necessary.


Assuntos
Síndrome Cardiorrenal , Fístula , Insuficiência Cardíaca , Hipertensão , Humanos , Ratos , Animais , Hipertensão/tratamento farmacológico , Ratos Transgênicos , Guanilil Ciclase Solúvel/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Óxido Nítrico/metabolismo , GMP Cíclico/metabolismo , Guanilato Ciclase
5.
J Hypertens ; 41(1): 99-114, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36204993

RESUMO

OBJECTIVE: Evaluation of the effect of endothelin type A (ET A ) receptor blockade on the course of volume-overload heart failure in rats with angiotensin II-dependent hypertension. METHODS: Ren-2 renin transgenic rats (TGR) were used as a model of hypertension. Heart failure was induced by creating an aorto-caval fistula (ACF). Selective ET A receptor blockade was achieved by atrasentan. For comparison, other rat groups received trandolapril, an angiotensin-converting enzyme inhibitor (ACEi). Animals first underwent ACF creation and 2 weeks later the treatment with atrasentan or trandolapril, alone or combined, was applied; the follow-up period was 20 weeks. RESULTS: Eighteen days after creating ACF, untreated TGR began to die, and none was alive by day 79. Both atrasentan and trandolapril treatment improved the survival rate, ultimately to 56% (18 of 31 animals) and 69% (22 of 32 animals), respectively. Combined ACEi and ET A receptor blockade improved the final survival rate to 52% (17 of 33 animals). The effects of the three treatment regimens on the survival rate did not significantly differ. All three treatment regimens suppressed the development of cardiac hypertrophy and lung congestion, decreased left ventricle (LV) end-diastolic volume and LV end-diastolic pressure, and improved LV systolic contractility in ACF TGR as compared with their untreated counterparts. CONCLUSION: The treatment with ET A receptor antagonist delays the onset of decompensation of volume-overload heart failure and improves the survival rate in hypertensive TGR with ACF-induced heart failure. However, the addition of ET A receptor blockade did not enhance the beneficial effects beyond those obtained with standard treatment with ACEi alone.


Assuntos
Fístula , Insuficiência Cardíaca , Hipertensão , Ratos , Animais , Angiotensina II , Receptor de Endotelina A , Atrasentana , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Ratos Transgênicos , Endotelinas , Endotelina-1 , Receptor Tipo 1 de Angiotensina
6.
Biomed Pharmacother ; 158: 114157, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580726

RESUMO

BACKGROUND: Association of congestive heart failure (CHF) and chronic kidney disease (CKD) worsens the patient's prognosis and results in poor survival rate. The aim of this study was to examine if addition of endothelin type A (ETA) receptor antagonist to the angiotensin-converting enzyme inhibitor (ACEi) will bring additional beneficial effects in experimental rats. METHODS: CKD was induced by 5/6 renal mass reduction (5/6 NX) and CHF was elicited by volume overload achieved by creation of aorto-caval fistula (ACF). The follow-up was 24 weeks after the first intervention (5/6 NX). The treatment regimens were initiated 6 weeks after 5/6 NX and 2 weeks after ACF creation. RESULTS: The final survival in untreated group was 15%. The treatment with ETA receptor antagonist alone or ACEi alone and the combined treatment improved the survival rate to 64%, 71% and 75%, respectively, however, the difference between the combination and either single treatment regimen was not significant. The combined treatment exerted best renoprotection, causing additional reduction in albuminuria and reducing renal glomerular and tubulointerstitial injury as compared with ACE inhibition alone. CONCLUSIONS: Our results show that treatment with ETA receptor antagonist attenuates the CKD- and CHF-related mortality, and addition of ETA receptor antagonist to the standard blockade of RAS by ACEi exhibits additional renoprotective actions.


Assuntos
Antagonistas do Receptor de Endotelina A , Fístula , Insuficiência Cardíaca , Insuficiência Renal Crônica , Animais , Ratos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina A/uso terapêutico , Endotelina-1/metabolismo , Fístula/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Rim , Ratos Transgênicos , Receptor de Endotelina A/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Sistema Renina-Angiotensina
7.
Biochem Pharmacol ; 195: 114866, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863976

RESUMO

Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.


Assuntos
Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Ácidos Graxos/metabolismo , Cardiopatias/metabolismo , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/metabolismo , Inibidores Enzimáticos/uso terapêutico , Epóxido Hidrolases/antagonistas & inibidores , Compostos de Epóxi/química , Cardiopatias/tratamento farmacológico , Cardiopatias/enzimologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/metabolismo , Humanos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/metabolismo , Solubilidade , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/enzimologia , Taquicardia Ventricular/metabolismo
8.
Biomedicines ; 9(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34944619

RESUMO

Detailed mechanism(s) of the beneficial effects of renal denervation (RDN) on the course of heart failure (HF) remain unclear. The study aimed to evaluate renal vascular responsiveness to angiotensin II (ANG II) and to characterize ANG II type 1 (AT1) and type 2 (AT2) receptors in the kidney of Ren-2 transgenic rats (TGR), a model of ANG II-dependent hypertension. HF was induced by volume overload using aorto-caval fistula (ACF). The studies were performed two weeks after RDN (three weeks after the creation of ACF), i.e., when non-denervated ACF TGR enter the decompensation phase of HF whereas those after RDN are still in the compensation phase. We found that ACF TGR showed lower renal blood flow (RBF) and its exaggerated response to intrarenal ANG II (8 ng); RDN further augmented this responsiveness. We found that all ANG II receptors in the kidney cortex were of the AT1 subtype. ANG II receptor binding characteristics in the renal cortex did not significantly differ between experimental groups, hence AT1 alterations are not responsible for renal vascular hyperresponsiveness to ANG II in ACF TGR, denervated or not. In conclusion, maintained renal AT1 receptor binding combined with elevated ANG II levels and renal vascular hyperresponsiveness to ANG II in ACF TGR influence renal hemodynamics and tubular reabsorption and lead to renal dysfunction in the high-output HF model. Since RDN did not attenuate the RBF decrease and enhanced renal vascular responsiveness to ANG II, the beneficial actions of RDN on HF-related mortality are probably not dominantly mediated by renal mechanism(s).

9.
Front Pharmacol ; 12: 729568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566652

RESUMO

Chronic volume overload induces multiple cardiac remodeling processes that finally result in eccentric cardiac hypertrophy and heart failure. We have hypothesized that chronic angiotensin-converting enzyme (ACE) inhibition by trandolapril might affect various remodeling processes differentially, thus allowing their dissociation. Cardiac remodeling due to chronic volume overload and the effects of trandolapril were investigated in rats with an aortocaval fistula (ACF rats). The aortocaval shunt was created using a needle technique and progression of cardiac remodeling to heart failure was followed for 24 weeks. In ACF rats, pronounced eccentric cardiac hypertrophy and contractile and proarrhythmic electrical remodeling were associated with increased mortality. Trandolapril substantially reduced the electrical proarrhythmic remodeling and mortality, whereas the effect on cardiac hypertrophy was less pronounced and significant eccentric hypertrophy was preserved. Effective suppression of electrical proarrhythmic remodeling and mortality but not hypertrophy indicates that the beneficial therapeutic effects of ACE inhibitor trandolapril in volume overload heart failure might be dissociated from pure antihypertrophic effects.

10.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445179

RESUMO

The aim of the present study was to perform kidney messenger ribonucleic acid (mRNA) analysis in normotensive, Hannover Sprague-Dawley (HanSD) rats and hypertensive, Ren-2 renin transgenic rats (TGR) after doxorubicin-induced heart failure (HF) with specific focus on genes that are implicated in the pathophysiology of HF-associated cardiorenal syndrome. We found that in both strains renin and angiotensin-converting enzyme mRNA expressions were upregulated indicating that the vasoconstrictor axis of the renin-angiotensin system was activated. We found that pre-proendothelin-1, endothelin-converting enzyme type 1 and endothelin type A receptor mRNA expressions were upregulated in HanSD rats, but not in TGR, suggesting the activation of endothelin system in HanSD rats, but not in TGR. We found that mRNA expression of cytochrome P-450 subfamily 2C23 was downregulated in TGR and not in HanSD rats, suggesting the deficiency in the intrarenal cytochrome P450-dependent pathway of arachidonic acid metabolism in TGR. These results should be the basis for future studies evaluating the pathophysiology of cardiorenal syndrome secondary to chemotherapy-induced HF in order to potentially develop new therapeutic approaches.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Doxorrubicina/efeitos adversos , Insuficiência Cardíaca/induzido quimicamente , Hipertensão/genética , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Renina/genética , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Hipertensão/complicações , Hipertensão/fisiopatologia , Rim/fisiopatologia , Nefropatias/genética , Nefropatias/fisiopatologia , Masculino , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Sistema Renina-Angiotensina/efeitos dos fármacos
11.
Sci Rep ; 11(1): 17136, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429479

RESUMO

Mechanisms of right ventricular (RV) dysfunction in heart failure (HF) are poorly understood. RV response to volume overload (VO), a common contributing factor to HF, is rarely studied. The goal was to identify interventricular differences in response to chronic VO. Rats underwent aorto-caval fistula (ACF)/sham operation to induce VO. After 24 weeks, RV and left ventricular (LV) functions, gene expression and proteomics were studied. ACF led to biventricular dilatation, systolic dysfunction and hypertrophy affecting relatively more RV. Increased RV afterload contributed to larger RV stroke work increment compared to LV. Both ACF ventricles displayed upregulation of genes of myocardial stress and metabolism. Most proteins reacted to VO in a similar direction in both ventricles, yet the expression changes were more pronounced in RV (pslope: < 0.001). The most upregulated were extracellular matrix (POSTN, NRAP, TGM2, CKAP4), cell adhesion (NCAM, NRAP, XIRP2) and cytoskeletal proteins (FHL1, CSRP3) and enzymes of carbohydrate (PKM) or norepinephrine (MAOA) metabolism. Downregulated were MYH6 and FAO enzymes. Therefore, when exposed to identical VO, both ventricles display similar upregulation of stress and metabolic markers. Relatively larger response of ACF RV compared to the LV may be caused by concomitant pulmonary hypertension. No evidence supports RV chamber-specific regulation of protein expression in response to VO.


Assuntos
Insuficiência Cardíaca/patologia , Remodelação Ventricular , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Miocárdio/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Proteoma/genética , Proteoma/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Ratos , Ratos Sprague-Dawley , Volume Sistólico
12.
Biomedicines ; 9(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34440257

RESUMO

This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF.

13.
Clin Exp Hypertens ; 43(6): 522-535, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-33783285

RESUMO

Background: The coincidence of congestive heart failure (CHF) and chronic kidney disease (CKD) results in poor survival rate. The aim of the study was to examine if renal denervation (RDN) would improve the survival rate in CHF induced by creation of aorto-caval fistula (ACF).Methods: Fawn-hooded hypertensive rats (FHH), a genetic model of spontaneous hypertension associated with CKD development, were used. Fawn-hooded low-pressure rats (FHL), without CKD, served as controls. RDN was performed 4 weeks after creation of ACF and the follow-up period was 10 weeks.Results: We found that intact (non-denervated) ACF FHH exhibited survival rate of 58.8% (20 out of 34 rats), significantly lower than in intact ACF FHL (81.3%, 26/32 rats). In intact ACF FHL albuminuria remained stable throughout the study, whereas in ACF FHH it increased significantly, up to a level 40-fold higher than the basal values. ACF FHL did not show increases in renal glomerular and tubulointerstitial injury as compared with FHL, while ACF FHH exhibited marked increases in kidney injury as compared with FHH. RDN did not improve the survival rate in either ACF FHL or ACF FHH and did not alter the course of albuminuria in ACF FHL. RDN attenuated the albuminuria, but did not reduce the kidney injury in ACF FHH.Conclusions: Our present results support the notion that even modest CKD increases CHF-related mortality. RDN did not attenuate CHF-dependent mortality in ACF FHH, it delayed the progressive rise in albuminuria, but it did not reduce the degree of kidney injury.


Assuntos
Fístula , Insuficiência Cardíaca , Hipertensão , Insuficiência Renal Crônica , Animais , Insuficiência Cardíaca/etiologia , Hipertensão/complicações , Rim , Ratos , Insuficiência Renal Crônica/complicações , Simpatectomia
14.
Front Physiol ; 12: 622882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584348

RESUMO

Cytochrome P450 (CYP-450) metabolites of arachidonic acid: epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) have established role in regulation of blood pressure (BP) and kidney function. EETs deficiency and increased renal formation of 20-HETE contribute to hypertension in spontaneously hypertensive rats (SHR). We explored the effects of 14,15-EET analog (EET-A) and of 20-HETE receptor blocker (AAA) on BP and kidney function in this model. In anesthetized SHR the responses were determined of mean arterial blood pressure (MABP), total renal (RBF), and cortical (CBF) and inner-medullary blood flows, glomerular filtration rate and renal excretion, to EET-A, 5 mg/kg, infused i.v. for 1 h to rats untreated or after blockade of endogenous EETs degradation with an inhibitor (c-AUCB) of soluble epoxide hydrolase. Also examined were the responses to AAA (10 mg/kg/h), given alone or together with EET-A. EET-A significantly increased RBF and CBF (+30% and 26%, respectively), seen already within first 30 min of infusion. The greatest increases in RBF and CBF (by about 40%) were seen after AAA, similar when given alone or combined with EET-A. MABP decreased after EET-A or AAA but not significantly after the combination thereof. In all groups, RBF, and CBF increases preceded the decrease in MABP. We found that in SHR both EET-A and AAA induced renal vasodilation but, unexpectedly, no additive effect was seen. We suggest that both agents have a definite therapeutic potential and deserve further experimental and clinical testing aimed at introduction of novel antihypertensive therapy.

15.
Kidney Blood Press Res ; 46(1): 95-113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33530085

RESUMO

OBJECTIVE: We examined if renal denervation (RDN) attenuates the progression of aortocaval fistula (ACF)-induced heart failure or improves renal hemodynamics in Ren-2 transgenic rats (TGR), a model of angiotensin II (ANG II)-dependent hypertension. METHODS: Bilateral RDN was performed 1 week after creation of ACF. The animals studied were ACF TGR and sham-operated controls, and both groups were subjected to RDN or sham denervation. In separate groups, renal artery blood flow (RBF) responses were determined to intrarenal ANG II (2 and 8 ng), norepinephrine (NE) (20 and 40 ng) and acetylcholine (Ach) (10 and 40 ng) 3 weeks after ACF creation. RESULTS: In nondenervated ACF TGR, the final survival rate was 10 versus 50% in RDN rats. RBF was significantly lower in ACF TGR than in sham-operated TGR (6.2 ± 0.3 vs. 9.7 ± 0.5 mL min-1 g-1, p < 0.05), the levels unaffected by RDN. Both doses of ANG II decreased RBF more in ACF TGR than in sham-operated TGR (-19 ± 3 vs. -9 ± 2% and -47 ± 3 vs. -22 ± 2%, p < 0.05 in both cases). RDN did not alter RBF responses to the lower dose, but increased it to the higher dose of ANG II in sham-operated as well as in ACF TGR. NE comparably decreased RBF in ACF TGR and sham-operated TGR, and RDN increased RBF responsiveness. Intrarenal Ach increased RBF significantly more in ACF TGR than in sham-operated TGR (29 ± 3 vs. 17 ± 3%, p < 0.05), the changes unaffected by RDN. ACF creation induced marked bilateral cardiac hypertrophy and lung congestion, both attenuated by RDN. In sham-operated but not in ACF TGR, RDN significantly decreased mean arterial pressure. CONCLUSION: The results show that RDN significantly improved survival rate in ACF TGR; however, this beneficial effect was not associated with improvement of reduced RBF or with attenuation of exaggerated renal vascular responsiveness to ANG II.


Assuntos
Angiotensina II/metabolismo , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/terapia , Hipertensão/complicações , Rim/inervação , Renina/genética , Simpatectomia , Animais , Fístula Arteriovenosa/complicações , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Rim/cirurgia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
16.
Front Pharmacol ; 12: 798642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111064

RESUMO

Numerous studies indicate a significant role for cytochrome P-450-dependent arachidonic acid metabolites in blood pressure regulation, vascular tone, and control of renal function. Epoxyeicosatrienoic acids (EETs) exhibit a spectrum of beneficial effects, such as vasodilatory activity and anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that inhibits sodium reabsorption in the kidney. In the present study, the efficiency of EET-A (a stable analog of 14,15-EET) alone and combined with AAA, a novel receptor antagonist of 20-HETE, was tested in spontaneously hypertensive rats (SHR). Adult SHR (16 weeks old) were treated with two doses of EET-A (10 or 40 mg/kg/day). In the following experiments, we also tested selected substances in the prevention of hypertension development in young SHR (6 weeks old). Young rats were treated with EET-A or the combination of EET-A and AAA (both at 10 mg/kg/day). The substances were administered in drinking water for 4 weeks. Blood pressure was measured by telemetry. Once-a-week observation in metabolic cages was performed; urine, blood, and tissue samples were collected for further analysis. The combined treatment with AAA + EET-A exhibited antihypertensive efficiency in young SHR, which remained normotensive until the end of the observation in comparison to a control group (systolic blood pressure, 134 ± 2 versus 156 ± 5 mmHg, respectively; p < 0.05). Moreover the combined treatment also increased the nitric oxide metabolite excretion. Considering the beneficial impact of the combined treatment with EET-A and AAA in young rats and our previous positive results in adult SHR, we suggest that it is a promising therapeutic strategy not only for the treatment but also for the prevention of hypertension.

17.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302374

RESUMO

Doxorubicin's (DOX) cardiotoxicity contributes to the development of chemotherapy-induced heart failure (HF) and new treatment strategies are in high demand. The aim of the present study was to characterize a DOX-induced model of HF in Ren-2 transgenic rats (TGR), those characterized by hypertension and hyperactivity of the renin-angiotensin-aldosterone system, and to compare the results with normotensive transgene-negative, Hannover Sprague-Dawley (HanSD) rats. DOX was administered for two weeks in a cumulative dose of 15 mg/kg. In HanSD rats DOX administration resulted in the development of an early phase of HF with the dominant symptom of bilateral cardiac atrophy demonstrable two weeks after the last DOX injection. In TGR, DOX caused substantial impairment of systolic function already at the end of the treatment, with further progression observed throughout the experiment. Additionally, two weeks after the termination of DOX treatment, TGR exhibited signs of HF characteristic for the transition stage between the compensated and decompensated phases of HF. In conclusion, we suggest that DOX-induced HF in TGR is a suitable model to study the pathophysiological aspects of chemotherapy-induced HF and to evaluate novel therapeutic strategies to combat this form of HF, which are urgently needed.


Assuntos
Antineoplásicos/toxicidade , Pressão Sanguínea , Doxorrubicina/toxicidade , Insuficiência Cardíaca/fisiopatologia , Sistema Renina-Angiotensina , Animais , Cardiotoxicidade , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Ratos , Ratos Sprague-Dawley , Renina/genética
18.
J Hypertens ; 38(9): 1802-1810, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32384390

RESUMO

OBJECTIVES: The global morbidity and mortality related to hypertension and associated disorders increases continuously and novel therapeutic strategies are still in high demand. Increasing evidence suggests the important role in blood pressure regulation of cytochrome P-450-dependent metabolites of arachidonic acid. Epoxyeicosatrienoic acids (EETs) induce vasodilation and natriuresis, and have renoprotective and anti-inflammatory properties. 20-HETE is an arachidonic acid metabolite with both prohypertensive and antihypertensive activities. To explore the pathophysiological role of arachidonic acid metabolites in more detail, we examined the antihypertensive efficiency of EET-A, a stable analog of 14,15-EET, and of AAA, a novel antagonist of the 20-HETE receptors. METHODS: Male spontaneously hypertensive rats (SHR) were treated for 5 weeks with EET-A, AAA or the combination; age-matched untreated SHR and normotensive Wistar-Kyoto rats served as controls. EET-A and AAA were administered in drinking water at 10 mg/kg/day each. SBP was measured by telemetry and urine, blood, and tissue samples were collected for relevant analyses. RESULTS: EET-A or AAA given alone had no significant effect on SHR blood pressure. In contrast, combined treatment with AAA and EET-A was significantly antihypertensive, causing a decrease in SBP from 180 ±â€Š3 to 160 ±â€Š5 mmHg (P < 0.05). Additionally, the combined treatment attenuated cardiac hypertrophy, decreased kidney ANG II level, increased natriuresis, and increased the excretion of nitric oxide metabolites. CONCLUSION: Considering the beneficial impact of the combined treatment with EET-A and AAA on SHR blood pressure and cardiovascular and renal function, we suggest that the treatment is a promising therapeutic strategy for human hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Eicosanoides/farmacologia , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Hipertensão/metabolismo , Animais , Masculino , Ratos , Ratos Endogâmicos SHR
19.
Kidney Blood Press Res ; 44(6): 1493-1505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31770762

RESUMO

INTRODUCTION: Previous studies in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX) have shown that besides pharmacological blockade of the renin-angiotensin system (RAS) also increasing kidney tissue epoxyeicosatrienoic acids (EET) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for degradation of EETs, and endothelin type A (ETA) receptor blockade retards chronic kidney disease (CKD) progression. This prompted us to evaluate if this progression will be alleviated by the addition of sEH inhibitor and ETA receptor antagonist to the standard complex blockade of RAS (angiotensin-converting enzyme inhibitor plus angiotensin II type 1 receptor blocker) in rats with established CKD. METHODS: The treatment regimens were initiated 6 weeks after 5/6 NX in TGR, and the follow-up period was 60 weeks. RESULTS: The addition of sEH inhibition to RAS blockade improved survival rate, further reduced albuminuria and renal glomerular and kidney tubulointerstitial injury, and attenuated the decline in creatinine clearance - all this as compared with 5/6 NX TGR treated with RAS blockade alone. Addition of ETA receptor antagonist to the combined RAS and sEH blockade not only offered no additional renoprotection but, surprisingly, also abolished the beneficial effects of adding sEH inhibitor to the RAS blockade. CONCLUSION: These data indicate that pharmacological strategies that combine the blockade of RAS and sEH could be a novel tool to combat the progression of CKD. Any attempts to further extend this therapeutic regimen should be made with extreme caution.


Assuntos
Antagonistas do Receptor de Endotelina A/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Insuficiência Renal Crônica/prevenção & controle , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Hipertensão , Masculino , Nefrectomia , Ratos , Ratos Transgênicos , Receptor de Endotelina A
20.
Front Physiol ; 10: 1145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620007

RESUMO

OBJECTIVE: Our previous study in heterozygous Ren-2 transgenic rats (TGR) demonstrated that long-term treatment with endothelin receptor A (ETA) blocker atrasentan added to the renin-angiotensin system (RAS) blockade had renoprotective effects in a model of chronic kidney disease (CKD) induced by partial nephrectomy. Since ETA blockade is known to cause edema, we were interested whether diuretic treatment added to this therapy would be beneficial. DESIGN AND METHODS: Partial nephrectomy (NX) was performed at the age of 3 months in TGR rats which were subjected to: (i) RAS blockade alone (angiotensin receptor blocker losartan and angiotensin converting enzyme inhibitor trandolapril), (ii) combined RAS (losartan and trandolapril) and ETA receptor blockade (atrasentan), or (iii) diuretic (hydrochlorothiazide) added to the combined RAS + ETA blockade for 50 weeks following NX. RESULTS: At the end of the study systolic blood pressure and cardiac hypertrophy were similarly decreased in all treated groups. Survival was significantly improved by ETA receptor blockade added to RAS blockade with no further effects of diuretic treatment. However, additional diuretic treatment combined with RAS + ETA blockade decreased body weight and had beneficial renoprotective effects - reductions of both kidney weight and kidney damage markers. Proteinuria gradually increased in rats treated with RAS blockade alone, while it was substantially lowered by additional ETA blockade. In rats treated with additional diuretic, proteinuria was progressively reduced throughout the experiment. CONCLUSION: A diuretic added to the combined RAS and ETA blockade has late renoprotective effects in CKD induced by partial nephrectomy in Ren-2 transgenic rats. The diuretic improved: renal function (evaluated as proteinuria and creatinine clearance), renal morphology (kidney mass, glomerular volume), and histological markers of kidney damage (glomerulosclerosis index, tubulointerstitial injury).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...